Eclipse Hashing: Alexandrov Compactification and Hashing with Hyperspheres for Fast Similarity Search
نویسندگان
چکیده
The similarity searches that use high-dimensional feature vectors consisting of a vast amount of data have a wide range of application. One way of conducting a fast similarity search is to transform the feature vectors into binary vectors and perform the similarity search by using the Hamming distance. Such a transformation is a hashing method, and the choice of hashing function is important. Hashing methods using hyperplanes or hyperspheres are proposed. One study reported here is inspired by Spherical LSH [1], and we use hypersperes to hash the feature vectors. Our method, called Eclipse-hashing, performs a compactification of R by using the inverse stereographic projection, which is a kind of Alexandrov compactification. By using Eclipse-hashing, one can obtain the hypersphere-hash function without explicitly using hyperspheres. Hence, the number of nonlinear operations is reduced and the processing time of hashing becomes shorter. Furthermore, we also show that as a result of improving the approximation accuracy, Eclipsehashing is more accurate than hyperplane-hashing.
منابع مشابه
Image authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملDiffusion Hashing
With the worldwide spread of the broadband Internet, massive multimedia data including texts, images, and videos are increasing explosively and available for interactive applications over the Internet. At the same time, more and more attention has been paid to aiming at fast retrieval from massive multimedia databases. Hash-based Approximate Nearest Neighbor (ANN) search is a technology that ac...
متن کاملRanking Preserving Hashing for Fast Similarity Search
Hashing method becomes popular for large scale similarity search due to its storage and computational efficiency. Many machine learning techniques, ranging from unsupervised to supervised, have been proposed to design compact hashing codes. Most of the existing hashing methods generate binary codes to efficiently find similar data examples to a query. However, the ranking accuracy among the ret...
متن کاملFast Information-Theoretic Agglomerative Co-clustering
Our algorithm iteratively merges those clusters whose merge yields a lower objective cost. However, operations such as finding nearest neighbors or closest pair of clusters are expensive, especially in high dimensions. To quickly find highly similar clusters to be merged, we exploit the Locality-Sensitive Hashing (LSH) technique, which we briefly describe in this section. Simply put, LSH [2] is...
متن کاملAsymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)
We present the first provably sublinear time hashing algorithm for approximate Maximum Inner Product Search (MIPS). Searching with (un-normalized) inner product as the underlying similarity measure is a known difficult problem and finding hashing schemes for MIPS was considered hard. While the existing Locality Sensitive Hashing (LSH) framework is insufficient for solving MIPS, in this paper we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1406.3882 شماره
صفحات -
تاریخ انتشار 2014